数据搜索系统,热门电子元器件搜索
  Chinese  ▼
ALLDATASHEETCN.COM

X  

LTC3851EGN-PBF 数据表(PDF) 13 Page - Linear Technology

部件名 LTC3851EGN-PBF
功能描述  Synchronous Step-Down Switching Regulator Controller
Download  28 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
制造商  LINER [Linear Technology]
网页  http://www.linear.com
标志 LINER - Linear Technology

LTC3851EGN-PBF 数据表(HTML) 13 Page - Linear Technology

Back Button LTC3851EGN-PBF Datasheet HTML 9Page - Linear Technology LTC3851EGN-PBF Datasheet HTML 10Page - Linear Technology LTC3851EGN-PBF Datasheet HTML 11Page - Linear Technology LTC3851EGN-PBF Datasheet HTML 12Page - Linear Technology LTC3851EGN-PBF Datasheet HTML 13Page - Linear Technology LTC3851EGN-PBF Datasheet HTML 14Page - Linear Technology LTC3851EGN-PBF Datasheet HTML 15Page - Linear Technology LTC3851EGN-PBF Datasheet HTML 16Page - Linear Technology LTC3851EGN-PBF Datasheet HTML 17Page - Linear Technology Next Button
Zoom Inzoom in Zoom Outzoom out
 13 / 28 page
background image
LTC3851
13
3851f
APPLICATIONS INFORMATION
VIN
VIN
INTVCC
BOOST
TG
SW
BG
GND
INDUCTOR
DCR
L
SENSE+
SENSE
LTC3851
VOUT
3851 F02
R1
R2
*PLACE C1 NEAR SENSE+, SENSEPINS
C1*
R1||R2 • C1 =
RSENSE(EQ) = DCR
L
DCR
R2
R1 + R2
Figure 2. Current Mode Control Using the Inductor DCR
The DCR of the inductor can also be measured using a
good RLC meter.
Slope Compensation and Inductor Peak Current
Slope compensation provides stability in constant fre-
quency architectures by preventing sub-harmonic oscil-
lations at high duty cycles. It is accomplished internally
by adding a compensating ramp to the inductor current
signal. Normally, this results in a reduction of maximum
inductor peak current for duty cycles >40%. However, the
LTC3851 uses a novel scheme that allows the maximum
inductor peak current to remain unaffected throughout
all duty cycles.
Inductor Value Calculation
The operating frequency and inductor selection are inter-
related in that higher operating frequencies allow the use of
smaller inductor and capacitor values. A higher frequency
generally results in lower efficiency because of MOSFET
gate charge losses. In addition to this basic trade-off, the
effect of inductor value on ripple current and low current
operation must also be considered.
The inductor value has a direct effect on ripple current.
The inductor ripple current
ΔIL decreases with higher
inductance or frequency and increases with higher VIN:
ΔI
fL
V
V
V
L
OUT
OUT
IN
=
⎝⎜
⎠⎟
1
1
Accepting larger values of
ΔIL allows the use of low
inductances, but results in higher output voltage ripple
and greater core losses. A reasonable starting point for
setting ripple current is
ΔIL = 0.3(IMAX). The maximum
ΔIL occurs at the maximum input voltage.
The inductor value also has secondary effects. The tran-
sition to Burst Mode operation begins when the average
inductor current required results in a peak current below
≈10% of the current limit determined by RSENSE. Lower
inductor values (higher
ΔIL) will cause this to occur at
lower load currents, which can cause a dip in efficiency in
the upper range of low current operation. In Burst Mode
operation, lower inductance values will cause the burst
frequency to increase.
Inductor Core Selection
Once the value for L is known, the type of inductor must
be selected. High efficiency converters generally cannot
afford the core loss found in low cost powdered iron cores,
forcing the use of more expensive ferrite or molypermalloy
cores. Actual core loss is independent of core size for a
fixed inductor value, but it is very dependent on inductance
selected. As inductance increases, core losses go down.
Unfortunately, increased inductance requires more turns
of wire and therefore copper losses will increase.
Ferrite designs have very low core loss and are preferred
at high switching frequencies, so design goals can con-
centrate on copper loss and preventing saturation. Ferrite
core material saturates “hard,” which means that induc-
tance collapses abruptly when the peak design current is
exceeded. This results in an abrupt increase in inductor
ripple current and consequent output voltage ripple. Do
not allow the core to saturate!
Power MOSFET and Schottky Diode (Optional)
Selection
Two external power MOSFETs must be selected for the
LTC3851 controller: one N-channel MOSFET for the top
(main) switch, and one N-channel MOSFET for the bottom
(synchronous) switch.


类似零件编号 - LTC3851EGN-PBF

制造商部件名数据表功能描述
logo
Linear Technology
LTC3851EMSE-1-PBF LINER-LTC3851EMSE-1-PBF Datasheet
342Kb / 28P
   Synchronous Step-Down Switching Regulator Controller
LTC3851EMSE-1-TRPBF LINER-LTC3851EMSE-1-TRPBF Datasheet
342Kb / 28P
   Synchronous Step-Down Switching Regulator Controller
LTC3851EUD-1-PBF LINER-LTC3851EUD-1-PBF Datasheet
342Kb / 28P
   Synchronous Step-Down Switching Regulator Controller
LTC3851EUD-1-TRPBF LINER-LTC3851EUD-1-TRPBF Datasheet
342Kb / 28P
   Synchronous Step-Down Switching Regulator Controller
More results

类似说明 - LTC3851EGN-PBF

制造商部件名数据表功能描述
logo
Linear Technology
LTC3851-1 LINER-LTC3851-1_15 Datasheet
362Kb / 28P
   Synchronous Step-Down Switching Regulator Controller
LTC3851A-1 LINER-LTC3851A-1_15 Datasheet
436Kb / 30P
   Synchronous Step-Down Switching Regulator Controller
LTC3851A LINER-LTC3851A_15 Datasheet
440Kb / 30P
   Synchronous Step-Down Switching Regulator Controller
LTC3851 LINER-LTC3851_15 Datasheet
335Kb / 28P
   Synchronous Step-Down Switching Regulator Controller
LTC3851-1 LINER-LTC3851-1 Datasheet
342Kb / 28P
   Synchronous Step-Down Switching Regulator Controller
logo
Rohm
BD9610AMUV ROHM-BD9610AMUV Datasheet
1Mb / 30P
   60V Synchronous Step-down Switching Regulator(Controller type)
logo
Seiko Instruments Inc
S8533 SII-S8533 Datasheet
1Mb / 33P
   STEP-DOWN, SYNCHRONOUS PWM CONTROL SWITCHING REGULATOR CONTROLLER
logo
Rohm
BD9610AMUV-E2 ROHM-BD9610AMUV-E2 Datasheet
1Mb / 30P
   60V Synchronous Step-down Switching Regulator(Controller type)
logo
ABLIC Inc.
S-8533 ABLIC-S-8533 Datasheet
488Kb / 33P
   STEP-DOWN, SYNCHRONOUS PWM CONTROL SWITCHING REGULATOR CONTROLLER
Rev.3.0_02
logo
Seiko Instruments Inc
S-8533 SII-S-8533 Datasheet
410Kb / 31P
   STEP-DOWN, SYNCHRONOUS PWM CONTROL SWITCHING REGULATOR CONTROLLER
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28


数据表 下载

Go To PDF Page


链接网址




隐私政策
ALLDATASHEETCN.COM
ALLDATASHEET是否为您带来帮助?  [ DONATE ] 

关于 Alldatasheet   |   广告服务   |   联系我们   |   隐私政策   |   链接交换   |   制造商名单
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com