数据搜索系统,热门电子元器件搜索
  Chinese  ▼
ALLDATASHEETCN.COM

X  

SMH4814SCR03 数据表(PDF) 2 Page - Summit Microelectronics, Inc.

部件名 SMH4814SCR03
功能描述  Dual Feed Active-ORing Programmable Hot Swap Controller
Download  44 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
制造商  SUMMIT [Summit Microelectronics, Inc.]
网页  http://www.summitmicro.com
标志 SUMMIT - Summit Microelectronics, Inc.

SMH4814SCR03 数据表(HTML) 2 Page - Summit Microelectronics, Inc.

  SMH4814SCR03 Datasheet HTML 1Page - Summit Microelectronics, Inc. SMH4814SCR03 Datasheet HTML 2Page - Summit Microelectronics, Inc. SMH4814SCR03 Datasheet HTML 3Page - Summit Microelectronics, Inc. SMH4814SCR03 Datasheet HTML 4Page - Summit Microelectronics, Inc. SMH4814SCR03 Datasheet HTML 5Page - Summit Microelectronics, Inc. SMH4814SCR03 Datasheet HTML 6Page - Summit Microelectronics, Inc. SMH4814SCR03 Datasheet HTML 7Page - Summit Microelectronics, Inc. SMH4814SCR03 Datasheet HTML 8Page - Summit Microelectronics, Inc. SMH4814SCR03 Datasheet HTML 9Page - Summit Microelectronics, Inc. Next Button
Zoom Inzoom in Zoom Outzoom out
 2 / 44 page
background image
SMH4814
Preliminary Information
Summit Microelectronics, Inc
2080 2.0 07/21/05
2
GENERAL DESCRIPTION
The SMH4814 integrated power controller operates
within a wide supply range, typically –32 to –72 volts,
and generates the signals necessary to drive isolated-
output DC/DC converters.
The device accepts two independent –48V feeds via
input pins FEEDA and FEEDB.
The VGATEA pin
controls the flow of power from FEEDA to the load.
The VGATEB pin controls the flow of power from
FEEDB to the load.
The SMH4814 continuously monitors the voltage on
FEEDA and FEEDB. The supply arbitration block in
Figure 2 selects which pin drives power to the device
based on the voltage level on each pin and the
acceptable voltage range. Once the FEEDA or FEEDB
pin
is
selected
the
SMH4814
asserts
the
corresponding VGATE pin. The assertion of this pin
turns on the external low-RDSON FETs to supply power
to the load.
Start-up Procedure
The general start-up procedure is as follows:
1. A physical connection must be made with the
chassis to discharge any electrostatic voltage
potentials when a typical add-in board is inserted
into the powered backplane.
2. The board then contacts the long pins on the
backplane that provide power and ground.
3. As soon as power is applied the device starts up,
but it does not immediately apply power to the
output load.
4. Under-voltage and over-voltage circuits inside the
controller verify that the input voltage is within a
user-specified range.
5. The SMH4814 senses the PD1 and PD0 pin
detection signals to indicate the card is seated
properly.
These requirements must be met for a Pin Detect
Delay period of tPDD. Once this time has elapsed the
hot-swap controller enables VGATE_HS to turn on the
external power MOSFET switch.
The VGATE_HS output is current limited to IVGATE,
allowing the slew rate to be easily modified using
external passive components. During the controlled
turn-on period the VDS of the MOSFET is monitored by
the DRAIN SENSE input. When DRAIN SENSE drops
below 2.5V, and VGATE_HS rises above V12 – VGT,
the SMH4814 asserts the PUPA through PUPD power
good outputs to enable the DC/DC controllers.
Steady-state operation is maintained as long as all
conditions are normal. Any of the following events
may cause the device to disable the DC/DC controllers
by shutting down the power MOSFETs:
An under-voltage or over-voltage condition on the
host power supply.
A failure of the power MOSFET sensed via the
DRAIN SENSE pin.
The PD1/PD0 pin detect signals becoming invalid.
The master enable (EN/TS) falls below 2.5V.
Any of the FB inputs driven low by events on the
secondary side of the DC/DC controllers.
The occurrence of an overcurrent.
The SMH4814 may be configured so that after any of
these events occurs the VGATE output shuts off, and
either latches into an off state or recycles power after
a cooling down period, tCYC.
Powering V12
The SMH4814 contains an internal shunt regulator on
the V12 pin that prevents the voltage from exceeding
12V. It is necessary to use a dropping resistor (RD)
between the host power supply and the V12 pin in
order to limit current into the device and prevent
possible damage. The dropping resistor allows the
device to operate across a wide range of system
supply voltages, typically –32 V to –72V, and also
helps protect the device against common-mode power
surges. Refer to the Applications Section for help on
calculating the RD resistance value.


类似零件编号 - SMH4814SCR03

制造商部件名数据表功能描述
logo
Summit Microelectronics...
SMH4811 SUMMIT-SMH4811 Datasheet
358Kb / 16P
   DISTRIBUTED POWER HOT SWAP CONTROLLER
SMH4811A SUMMIT-SMH4811A Datasheet
358Kb / 16P
   DISTRIBUTED POWER HOT SWAP CONTROLLER
SMH4811AG SUMMIT-SMH4811AG Datasheet
358Kb / 16P
   DISTRIBUTED POWER HOT SWAP CONTROLLER
SMH4811AS SUMMIT-SMH4811AS Datasheet
358Kb / 16P
   DISTRIBUTED POWER HOT SWAP CONTROLLER
SMH4811A SUMMIT-SMH4811A_09 Datasheet
936Kb / 15P
   Programmable Distributed Power Hot-Swap Controller for High-Availability Systems
More results

类似说明 - SMH4814SCR03

制造商部件名数据表功能描述
logo
Maxim Integrated Produc...
MAX15068 MAXIM-MAX15068 Datasheet
555Kb / 17P
   Dual ORing, Single Hot-Swap Controller
Rev 0; 12/13
MAX5963 MAXIM-MAX5963 Datasheet
295Kb / 20P
   Dual, 7.5V to 76V, Hot-Swap and Diode ORing Controller
Rev 0; 10/08
logo
Linear Technology
LT4220 LINER-LT4220_15 Datasheet
265Kb / 16P
   Dual Supply Hot Swap Controller
LTC1646 LINER-LTC1646 Datasheet
407Kb / 20P
   CompactPCI Dual Hot Swap Controller
LT4220 LINER-LT4220 Datasheet
267Kb / 16P
   Dual Supply Hot Swap Controller
LTC1646 LINER-LTC1646_15 Datasheet
413Kb / 20P
   CompactPCI Dual Hot Swap Controller
logo
Bel Fuse Inc.
LDX-D20 BEL-LDX-D20 Datasheet
486Kb / 3P
   Active ORing Controller
logo
Linear Technology
LTC1642 LINER-LTC1642 Datasheet
147Kb / 12P
   Hot Swap Controller
LTC4218 LINER-LTC4218_15 Datasheet
318Kb / 18P
   Hot Swap Controller
LTC1421-2.5 LINER-LTC1421-2.5_15 Datasheet
334Kb / 24P
   Hot Swap Controller
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44


数据表 下载

Go To PDF Page


链接网址




隐私政策
ALLDATASHEETCN.COM
ALLDATASHEET是否为您带来帮助?  [ DONATE ] 

关于 Alldatasheet   |   广告服务   |   联系我们   |   隐私政策   |   链接交换   |   制造商名单
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com