数据搜索系统,热门电子元器件搜索
  Chinese  ▼
ALLDATASHEETCN.COM

X  

ADRF6510 数据表(PDF) 22 Page - Analog Devices

部件名 ADRF6510
功能描述  Dual Programmable Filters Variable Gain Amplifiers
Download  32 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
制造商  AD [Analog Devices]
网页  http://www.analog.com
标志 AD - Analog Devices

ADRF6510 数据表(HTML) 22 Page - Analog Devices

Back Button ADRF6510_17 Datasheet HTML 18Page - Analog Devices ADRF6510_17 Datasheet HTML 19Page - Analog Devices ADRF6510_17 Datasheet HTML 20Page - Analog Devices ADRF6510_17 Datasheet HTML 21Page - Analog Devices ADRF6510_17 Datasheet HTML 22Page - Analog Devices ADRF6510_17 Datasheet HTML 23Page - Analog Devices ADRF6510_17 Datasheet HTML 24Page - Analog Devices ADRF6510_17 Datasheet HTML 25Page - Analog Devices ADRF6510_17 Datasheet HTML 26Page - Analog Devices Next Button
Zoom Inzoom in Zoom Outzoom out
 22 / 32 page
background image
ADRF6510
Data Sheet
Rev. B | Page 22 of 32
0
–80
–70
–60
–50
–40
–30
–20
–10
0
10
PIN (dBm)
–5
–10
–15
–20
–25
–30
–40
–35
–50
–45
750mV p-p
1.50V p-p
1.75V p-p
2.00V p-p
2.25V p-p
2.90V p-p
2.95V p-p
Figure 52. EVM vs. RF Input Power over Output Voltage Levels,
IF = 5 MHz, OFDS Pulled High
Figure 52 shows EVM degradation as the signal level nears
compression. At 2.25 V p-p the signal is already degraded a few
decibels. When the output level is near the absolute limits of the
output stage, the EVM becomes much more erratic over the RF
input power level.
EFFECT OF COFS ON EVM
When enabled, the dc offset compensation loop effectively
nulls any information below the high-pass corner set by the
COFS capacitor. However, loss of the low frequency information
of the modulated signal can degrade the EVM in some cases.
As the signal bandwidth becomes larger, the percentage of
information that is corrupted by the high-pass corner becomes
smaller. In such cases, it is important to select a COFS capacitor
large enough to minimize the high-pass corner frequency,
which prevents loss of information and degraded EVM.
Figure 53 shows the effect of COFS values at a single signal
bandwidth of 6.75 MHz = 1.35 × 5 MHz over input power.
Figure 54 shows that EVM can be improved by using a bigger
COFS value and/or increasing the signal bandwidth. Increasing
signal bandwidth will improve EVM to a point after which
the bandwidth limitations of the source, the part, and/or the
receiver will start to dominate and degrade EVM.
0
–80
–70
–60
–50
–40
–30
–20
–10
0
10
PIN (dBm)
–5
–10
–15
–20
–25
–30
–40
–35
–50
–45
COFS = 1µF
COFS = 100nF
COFS = 1nF
Figure 53. EVM vs. RF Input Power over COFS Values
0
0
35
30
25
20
15
10
5
SIGNAL BANDWIDTH (MHz)
–5
–10
–15
–20
–25
–30
–40
–35
–45
COFS = 1µF
COFS = 100nF
COFS = 1nF
Figure 54. EVM vs. Signal BW over COFS Values
ANTI-ALIASING FILTER
The noise spectral density of the ADRF6510 outside the filter
bandwidth is limited by the fixed VGA output noise. It may be
necessary to use an external, fixed-frequency, passive filter prior
to an analog-to-digital conversion to prevent noise aliasing from
degrading the signal-to-noise ratio. As shown in Figure 47 and
Figure 48, the noise density at higher frequencies tends to be
flat, and any higher IF noise aliasing into the Nyquist zone has
minimal effects.
When designing an antialiasing filter, it is necessary to consider
the overall source and load impedance presented by the
ADRF6510 and the ADC input to design the filter network. The
differential baseband output impedance of the ADRF6510 is
20 Ω and is designed to drive a high impedance ADC input. It
may be desirable to terminate the ADC input to a lower imped-
ance by using a terminating resistor, such as 500 Ω. The
terminating resistor helps to better define the input impedance
at the ADC input at the cost of a slightly reduced gain.
The order and type of filter network depend on the desired high
frequency rejection required, the pass-band ripple, and the
group delay. Filter design tables provide outlines for various
filter types and orders, illustrating the normalized inductor and
capacitor values for a 1 Hz cutoff frequency and 1 Ω load.
After scaling the normalized prototype element values by the
actual desired cutoff frequency and load impedance, the series
reactance elements are halved to realize the final balanced filter
network component values.
As an example, a second-order Butterworth, low-pass filter design
is shown in Figure 55 where the differential load impedance is
500 Ω and the source impedance is 50 Ω. The normalized series
inductor value for the 10-to-1, load-to-source impedance ratio
is 0.074 H, and the normalized shunt capacitor is 14.814 F. For
a 31 MHz cutoff frequency, the single-ended equivalent circuit
consists of a 0.191 µH series inductor followed by a 152 pF
shunt capacitor.


类似零件编号 - ADRF6510_17

制造商部件名数据表功能描述
logo
Analog Devices
ADRF6510-EVALZ AD-ADRF6510-EVALZ Datasheet
563Kb / 28P
   30 MHz Dual Programmable Filters and Variable Gain Amplifiers
REV. 0
ADRF6510ACPZ-R7 AD-ADRF6510ACPZ-R7 Datasheet
563Kb / 28P
   30 MHz Dual Programmable Filters and Variable Gain Amplifiers
REV. 0
ADRF6510ACPZ-WP AD-ADRF6510ACPZ-WP Datasheet
563Kb / 28P
   30 MHz Dual Programmable Filters and Variable Gain Amplifiers
REV. 0
More results

类似说明 - ADRF6510_17

制造商部件名数据表功能描述
logo
Analog Devices
ADRF6516 AD-ADRF6516_17 Datasheet
1Mb / 29P
   Dual Programmable Filters and Variable Gain Amplifiers
ADRF6510 AD-ADRF6510 Datasheet
563Kb / 28P
   30 MHz Dual Programmable Filters and Variable Gain Amplifiers
REV. 0
ADRF6518 AD-ADRF6518 Datasheet
1Mb / 36P
   63 MHz Dual Programmable Filters and Variable Gain Amplifiers
Rev. PrA
ADRF6518 AD-ADRF6518_17 Datasheet
1Mb / 39P
   1.1 GHz Variable Gain Amplifiers Baseband Programmable Filters
AD8366 AD-AD8366_17 Datasheet
1Mb / 28P
   Dual-Digital Variable Gain Amplifiers
AD600 AD-AD600_06 Datasheet
588Kb / 28P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. E
AD602 AD-AD602_15 Datasheet
677Kb / 33P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. F
AD600 AD-AD600_15 Datasheet
677Kb / 33P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. F
AD600 AD-AD600 Datasheet
669Kb / 20P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
REV. A
AD8366ACPZ-R7 AD-AD8366ACPZ-R7 Datasheet
894Kb / 28P
   DC to 600 MHz, Dual-Digital Variable Gain Amplifiers
REV. A
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32


数据表 下载

Go To PDF Page


链接网址




隐私政策
ALLDATASHEETCN.COM
ALLDATASHEET是否为您带来帮助?  [ DONATE ] 

关于 Alldatasheet   |   广告服务   |   联系我们   |   隐私政策   |   链接交换   |   制造商名单
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com