数据搜索系统,热门电子元器件搜索
  Chinese  ▼
ALLDATASHEETCN.COM

X  

AD9883 数据表(PDF) 8 Page - Analog Devices

部件名 AD9883
功能描述  110 MSPS Analog Interface for Flat Panel Displays
Download  24 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
制造商  AD [Analog Devices]
网页  http://www.analog.com
标志 AD - Analog Devices

AD9883 数据表(HTML) 8 Page - Analog Devices

Back Button AD9883 Datasheet HTML 4Page - Analog Devices AD9883 Datasheet HTML 5Page - Analog Devices AD9883 Datasheet HTML 6Page - Analog Devices AD9883 Datasheet HTML 7Page - Analog Devices AD9883 Datasheet HTML 8Page - Analog Devices AD9883 Datasheet HTML 9Page - Analog Devices AD9883 Datasheet HTML 10Page - Analog Devices AD9883 Datasheet HTML 11Page - Analog Devices AD9883 Datasheet HTML 12Page - Analog Devices Next Button
Zoom Inzoom in Zoom Outzoom out
 8 / 24 page
background image
REV. 0
AD9883
–8–
At that point the signal should be resistively terminated (75
Ω to
the signal ground return) and capacitively coupled to the AD9883
inputs through 47 nF capacitors. These capacitors form part of
the dc restoration circuit.
In an ideal world of perfectly matched impedances, the best perfor-
mance can be obtained with the widest possible signal bandwidth.
The ultrawide bandwidth inputs of the AD9883 (300 MHz) can
track the input signal continuously as it moves from one pixel level
to the next, and digitize the pixel during a long, flat pixel time. In
many systems, however, there are mismatches, reflections, and
noise, which can result in excessive ringing and distortion of the
input waveform. This makes it more difficult to establish a sam-
pling phase that provides good image quality. It has been shown
that a small inductor in series with the input is effective in
rolling off the input bandwidth slightly, and providing a high
quality signal over a wider range of conditions. Using a Fair-
Rite #2508051217Z0- High-Speed Signal Chip Bead inductor
in the circuit of Figure 1 gives good results in most applications.
RGB
INPUT
RAIN
GAIN
BAIN
47nF
75
Figure 1. Analog Input Interface Circuit
Hsync, Vsync Inputs
The interface also takes a horizontal sync signal, which is used
to generate the pixel clock and clamp timing. This can be either
a sync signal directly from the graphics source, or a preprocessed
TTL or CMOS level signal.
The Hsync input includes a Schmitt trigger buffer for immunity
to noise and signals with long rise times. In typical PC-based
graphic systems, the sync signals are simply TTL-level drivers
feeding unshielded wires in the monitor cable. As such, no ter-
mination is required.
Serial Control Port
The serial control port is designed for 3.3 V logic. If there are 5 V
drivers on the bus, these pins should be protected with 150
Ω series
resistors placed between the pull-up resistors and the input pins.
Output Signal Handling
The digital outputs are designed and specified to operate from a
3.3 V power supply (VDD). They can also work with a VDD as
low as 2.5 V for compatibility with other 2.5 V logic.
Clamping
RGB Clamping
To properly digitize the incoming signal, the dc offset of the input
must be adjusted to fit the range of the on-board A/D converters.
Most graphics systems produce RGB signals with black at
ground and white at approximately 0.75 V. However, if sync
signals are embedded in the graphics, the sync tip is often at
ground and black is at 300 mV. Then white is at approximately
1.0 V. Some common RGB line amplifier boxes use emitter-
follower buffers to split signals and increase drive capability.
This introduces a 700 mV dc offset to the signal, which must be
removed for proper capture by the AD9883.
The key to clamping is to identify a portion (time) of the signal
when the graphic system is known to be producing black. An
offset is then introduced which results in the A/D converters
producing a black output (code 00h) when the known black
input is present. The offset then remains in place when other
signal levels are processed, and the entire signal is shifted to elimi-
nate offset errors.
In most pc graphics systems, black is transmitted between active
video lines. With CRT displays, when the electron beam has
completed writing a horizontal line on the screen (at the right
side), the beam is deflected quickly to the left side of the screen
(called horizontal retrace) and a black signal is provided to
prevent the beam from disturbing the image.
In systems with embedded sync, a blacker-than-black signal
(Hsync) is produced briefly to signal the CRT that it is time to
begin a retrace. For obvious reasons, it is important to avoid
clamping on the tip of Hsync. Fortunately, there is virtually
always a period following Hsync called the back porch where a
good black reference is provided. This is the time when clamp-
ing should be done.
The clamp timing can be established by simply exercising the
CLAMP pin at the appropriate time (with External Clamp = 1).
The polarity of this signal is set by the Clamp Polarity bit.
A simpler method of clamp timing employs the AD9883 internal
clamp timing generator. The Clamp Placement register is pro-
grammed with the number of pixel times that should pass after
the trailing edge of HSYNC before clamping starts. A second
register (Clamp Duration) sets the duration of the clamp.
These are both 8-bit values, providing considerable flexibility in
clamp generation. The clamp timing is referenced to the trailing
edge of Hsync because, though Hsync duration can vary widely,
the back porch (black reference) always follows Hsync. A good
starting point for establishing clamping is to set the clamp place-
ment to 09h (providing 9 pixel periods for the graphics signal to
stabilize after sync) and set the clamp duration to 14h (giving
the clamp 20 pixel periods to reestablish the black reference).
Clamping is accomplished by placing an appropriate charge on
the external input coupling capacitor. The value of this capaci-
tor affects the performance of the clamp. If it is too small, there
will be a significant amplitude change during a horizontal line
time (between clamping intervals). If the capacitor is too large,
then it will take excessively long for the clamp to recover from a
large change in incoming signal offset. The recommended value
(47 nF) results in recovering from a step error of 100 mV to
within 1/2 LSB in 10 lines with a clamp duration of 20 pixel
periods on a 60 Hz SXGA signal.
YUV Clamping
YUV graphic signals are slightly different from RGB signals in
that the dc reference level (black level in RGB signals) can be at
the midpoint of the graphics signal rather than the bottom. For
these signals it can be necessary to clamp to the midscale range
of the A/D converter range (80h) rather than bottom of the A/D
converter range (00h).
Clamping to midscale rather than ground can be accomplished
by setting the clamp select bits in the serial bus register. Each of
the three converters has its own selection bit so that they can be
clamped to either midscale or ground independently. These bits
are located in register 10h and are Bits 0–2. The midscale refer-
ence voltage that each A/D converter clamps to is provided on
the MIDSCV pin, (Pin 37). This pin should be bypassed to
ground with a 0.1
µF capacitor, (even if midscale clamping is
not required).


类似零件编号 - AD9883

制造商部件名数据表功能描述
logo
Analog Devices
AD9883A AD-AD9883A Datasheet
229Kb / 28P
   110 MSPS/140 MSPS Analog Interface for Flat Panel Displays
REV. B
AD9883A/PCB AD-AD9883A/PCB Datasheet
229Kb / 28P
   110 MSPS/140 MSPS Analog Interface for Flat Panel Displays
REV. B
AD9883ABST-110 AD-AD9883ABST-110 Datasheet
229Kb / 28P
   110 MSPS/140 MSPS Analog Interface for Flat Panel Displays
REV. B
AD9883ABST-140 AD-AD9883ABST-140 Datasheet
229Kb / 28P
   110 MSPS/140 MSPS Analog Interface for Flat Panel Displays
REV. B
AD9883ABST-RL110 AD-AD9883ABST-RL110 Datasheet
229Kb / 28P
   110 MSPS/140 MSPS Analog Interface for Flat Panel Displays
REV. B
More results

类似说明 - AD9883

制造商部件名数据表功能描述
logo
Analog Devices
AD9883A AD-AD9883A_15 Datasheet
235Kb / 28P
   110 MSPS/140 MSPS Analog Interface for Flat Panel Displays
REV. B
AD9883A AD-AD9883A Datasheet
229Kb / 28P
   110 MSPS/140 MSPS Analog Interface for Flat Panel Displays
REV. B
AD9985 AD-AD9985_15 Datasheet
355Kb / 32P
   110 MSPS/140 MSPS Analog Interface for Flat Panel Displays
REV. 0
AD9985A AD-AD9985A Datasheet
628Kb / 32P
   110 MSPS/140 MSPS Analog Interface for Flat Panel Displays
REV. 0
AD9985A AD-AD9985A_15 Datasheet
629Kb / 32P
   110 MSPS/140 MSPS Analog Interface for Flat Panel Displays
REV. 0
AD9985 AD-AD9985 Datasheet
349Kb / 32P
   110 MSPS/140 MSPS Analog Interface for Flat Panel Displays
REV. 0
AD9886 AD-AD9886 Datasheet
248Kb / 32P
   Analog Interface for Flat Panel Displays
REV. 0
AD9886 AD-AD9886_15 Datasheet
248Kb / 32P
   Analog Interface for Flat Panel Displays
REV. 0
AD9884A AD-AD9884A_15 Datasheet
220Kb / 24P
   100 MSPS/140 MSPS Analog Flat Panel Interface
REV. C
AD9884A AD-AD9884A Datasheet
186Kb / 24P
   100 MSPS/140 MSPS Analog Flat Panel Interface
REV. B
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24


数据表 下载

Go To PDF Page


链接网址




隐私政策
ALLDATASHEETCN.COM
ALLDATASHEET是否为您带来帮助?  [ DONATE ] 

关于 Alldatasheet   |   广告服务   |   联系我们   |   隐私政策   |   链接交换   |   制造商名单
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com