数据搜索系统,热门电子元器件搜索
  Chinese  ▼
ALLDATASHEETCN.COM

X  

CS5212ED14 数据表(PDF) 11 Page - ON Semiconductor

部件名 CS5212ED14
功能描述  Low Voltage Synchronous Buck Controller
Download  13 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
制造商  ONSEMI [ON Semiconductor]
网页  http://www.onsemi.com
标志 ONSEMI - ON Semiconductor

CS5212ED14 数据表(HTML) 11 Page - ON Semiconductor

Back Button CS5212ED14 Datasheet HTML 5Page - ON Semiconductor CS5212ED14 Datasheet HTML 6Page - ON Semiconductor CS5212ED14 Datasheet HTML 7Page - ON Semiconductor CS5212ED14 Datasheet HTML 8Page - ON Semiconductor CS5212ED14 Datasheet HTML 9Page - ON Semiconductor CS5212ED14 Datasheet HTML 10Page - ON Semiconductor CS5212ED14 Datasheet HTML 11Page - ON Semiconductor CS5212ED14 Datasheet HTML 12Page - ON Semiconductor CS5212ED14 Datasheet HTML 13Page - ON Semiconductor  
Zoom Inzoom in Zoom Outzoom out
 11 / 13 page
background image
CS5212
http://onsemi.com
11
VFFB Feedback Selection
To take full advantage of the V2 control scheme, a small
amount of output ripple must be fed back to the VFFB pin,
typically 50 mV. For most application, this requirement is
simple to achieve and the VFFB can be connected directly to
the VFB pin. There are some application that have to meet
stringent load transient requirements. One of the key factor in
achieving tight dynamic voltage regulation is low ESR. Low
ESR at the regulator output results in low output voltage
ripple. This situation could result in increase noise sensitivity
and a potential for loop instability. In applications where the
output ripple is not sufficient, the performance of the CS5212
can be improved by adding a fixed amount external ramp
compensation to the VFFB pin. Refer to Figure 7, the amount
of ramp at the VFFB pin depends on the switch node Voltage,
Feedback Voltage, R1 and C2.
Vramp + (Vsw * VFB)
ton (R1
C2)
where:
Vramp = amount of ramp needed;
Vsw = switch note voltage;
VFB = voltage feedback, 1 V;
ton = switch on−time.
To minimize the lost in efficiency R1 resistance should be
large, typically 100 k or larger. With R1 chosen, C2 can be
determined by the following;
C2 + (Vsw * VFB)
ton (R1
Vramp)
C1 is used as a bypass capacitor and its value should be
equal to or greater than C2.
Figure 7. Small RC Filter Providing the Proper Voltage
Ramp at the Beginning of Each On−Time Cycle
Vsw
R2
1.0 k
VFFB
VFB
R1
C1
C2
Maximum Frequency Operation
The minimum pulse width may limit the maximum
operating frequency. The duty factor, given by the
output/input voltage ratio, multiplied by the period
determines the pulse width during normal operation. This
pulse width must be greater than 200 ns, or duty cycle jitter
could become excessive. For low pulse widths below 300 ns,
external slope compensation should be added to the VFFB pin
to increase the PWM ramp signal and improve stability.
50 mV of added ramp at the VFFB pin is typically enough.
Current Sense Component Selection
The current limit threshold is set by sensing a 60 mV
voltage differential between the IS+ and IS− pins. Referring
to Figure 8, the time constant of the R2,C1 filter should be set
larger than the L/R1 time constant under worst case
tolerances, to prevent overshoot in the sensed voltage and
tripping the current limit too low. Resistor R3 of value equal
to R2 is added for bias current cancellation. R2 and R3 should
not be made too large, to reduce errors from bias current
offsets. For typical L/R time constants, a 0.1
mF capacitor for
C1 will allow R2 to be between 1.0 k and 10 k
W.
The current limit without R4 and R5, which are optional,
is given by 60 mV/R1, where R1 is the internal resistance of
the inductor, obtained from the manufacturer. The addition of
R5 can be used to decrease the current limit to a value given
by:
ILIM + (60 mV * (VOUT
R3 (R3 ) R5)) R1
where VOUT is the output voltage.
Similiarly, omitting R5 and adding R4 will increase the
current limit to a value given by:
ILIM + 60 mV R1
(1 ) R2 R4)
Essentially, R4 or R5 are used to increase or decrease the
inductor voltage drop which corresponds to 60 mV at the IS+
and IS− pins.
Figure 8. Current Limit
R5
R3
IS−
IS+
R2
60 mV Trip
R4
C1
R1
L1
L
VOUT
Switching
Node
Boost Component Selection for Upper and Lower
FET Gate Drive
The boost (BST) pin provides for application of a higher
voltage to drive the upper FET. This voltage may be provided
by a fixed higher voltage or it may be generated with a boost
capacitor and charging diodes, as shown in Figure 1. The
voltage in the boost configuration would be the summation of
the voltage from the charging diodes and the output voltage
swing. Care must be taken to keep the peak voltage with
respect to ground less than 20 V peak. The capacitor value
should be ten times larger than the capacitance of the top FET.
The boost circuit requires a modification to achieve startup.
See Rpullup Selection for boost circuit startup.


类似零件编号 - CS5212ED14

制造商部件名数据表功能描述
logo
ON Semiconductor
CS5212ED14 ONSEMI-CS5212ED14 Datasheet
101Kb / 16P
   Low Voltage Synchronous Buck Controller
May, 2002 ??Rev. 2
More results

类似说明 - CS5212ED14

制造商部件名数据表功能描述
logo
ON Semiconductor
NCP1586 ONSEMI-NCP1586 Datasheet
80Kb / 8P
   Low Voltage Synchronous Buck Controller
March, 2007 ??Rev. 0
NCP1570 ONSEMI-NCP1570 Datasheet
279Kb / 14P
   Low Voltage Synchronous Buck Controller
July, 2006 ??Rev. 5
logo
Unisonic Technologies
UCS1201 UTC-UCS1201 Datasheet
166Kb / 5P
   LOW VOLTAGE SYNCHRONOUS BUCK CONTROLLER
logo
ON Semiconductor
NCP1589D ONSEMI-NCP1589D_17 Datasheet
89Kb / 8P
   Low Voltage Synchronous Buck Controller
January, 2017 ??Rev. 2
NCP81046 ONSEMI-NCP81046 Datasheet
157Kb / 10P
   Low Voltage Synchronous Buck Controller
June, 2012 ??Rev. P0
NCP1579 ONSEMI-NCP1579_13 Datasheet
148Kb / 11P
   Low Voltage Synchronous Buck Controller
April, 2013 ??Rev. 3
NCP1588 ONSEMI-NCP1588_V01 Datasheet
199Kb / 12P
   Low Voltage Synchronous Buck Controller
January, 2008 - Rev. 4
NCP1589A ONSEMI-NCP1589A Datasheet
206Kb / 10P
   Low Voltage Synchronous Buck Controller
May, 2009 ??Rev. P4
NCP1571 ONSEMI-NCP1571 Datasheet
104Kb / 16P
   Low Voltage Synchronous Buck Controller
October, 2004 ??Rev. 4
logo
Texas Instruments
UCC3585M TI1-UCC3585M Datasheet
802Kb / 21P
[Old version datasheet]   LOW-VOLTAGE SYNCHRONOUS BUCK CONTROLLER
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13


数据表 下载

Go To PDF Page


链接网址




隐私政策
ALLDATASHEETCN.COM
ALLDATASHEET是否为您带来帮助?  [ DONATE ] 

关于 Alldatasheet   |   广告服务   |   联系我们   |   隐私政策   |   链接交换   |   制造商名单
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com